

Moldex3D eDesign – Performance Injection Molding Simulation

Larry Ren, Regional Manager Moldex3D Europe

CoreTech System Co., Ltd. www.moldex3d.com

Copyright © 2013 Moldex3D. All rights reserved.

Company Preview

- > Since 1995, CoreTech System developed the Moldex3D full solution and operated a global market of plastic injection molding simulation.
- > Moldex3D is the innovator of TRUE 3D molding CAE.
- > CoreTech constructs the global service network through direct offices or professional resellers around the world.

Headquarters, HsinChu Silicon Valley of Taiwan

Moldex3D Alliances

Moldex3D Application Fields

Semiconductor Industry

Big parts Small parts Thick parts Thin parts

Moldex3D Reference Customers

Moldex3D Technology Road Map

Moldex3D Product Portfolio

- Moldex3D provides a series of simulation packages to > efficiently evaluate molding behaviors and improve product quality:
 - eDesign Basic _
 - eDesign
 - Professional (eDesign+Shell)
- Advanced (eDesign+Solid+Shell)
 IC Packaging
 Solution Add-on modules > Solution Add-on modules provide the broadest range of solutions for different industries

eDesign Basic Package

Included modules Plastic

- > eDesign Basic
 - Provides a full range of flow simulation capabilities
 - Predict filling performance, decide ultimate gate location, eliminate weld lines and air traps

eDesign Package

Included modules

- eDesign
 - Equipped with auto-meshing feature and intelligent modeling wizards for streamline CAD-to-CAE simulation process
 - Delivers reliable analysis results and quickly verifies part and mold designs
 - Easy to use without additional training, efficiently minimize user operation

eDesign Module Introduction

Moldex3D

What Moldex3D Can Do?

- > Improve the appearance and dimension
 - Weld line, air trap, flow mark, sink mark
 - Flow balance, shrinkage and warpage control
- > Lower down the cost
 - Remove hot and cold spots for cycle time reduction
 - Mold structure optimization
 - Reduce mold trial and tooling costs
- > Optimize the production process
 - Injection condition optimization
 - Clamping force reduction, machine selection

The main challenges of injection molding

- Product Design

- > Product Design Challenges
 - Design parameters to determine(ex: thickness...)
 - Shorten the product development time
 - High tooling cost due to complex geometry
 - Demanding Tolerance
 - Thin-Wall Injection Molding(TWIM)
 - Multi-Component Molding(MCM)

Moldex3D

The main challenges of injection molding - Mold Design

- > Mold Design Challenges
 - Gate design type ? number ? location ? size ?
 - Runner design type ? cavity design ? size ?
 - Cooling circuit design

Moldex3D Precise & Realistic Simulation

- > Hot Runner
- > Insert Molding
- > Variotherm
- > Injection Compression Molding
- > Compression Molding
- > Gas assisted Injection Molding
- > Water assisted Injection Molding
- > Reactive Injection Molding
- > Encapsulation
- > Co-injection Molding
- > Bi-injection Molding
- > Fiber-Reinforced Plastic Injection
- > Microcellular Injection Molding
- > Powder Injection Molding

Moldex3D

Moldex3D eDesign

"Easy and Fast 3D CAE solution based on Solid mesh for injection molded plastics industry"

Bottleneck of General CAE Workflow

- > However, the construction of mesh for different product geometry is the major difficulty
 - 80% man-hours are spent in constructing the mesh
 - Construction time and mesh quality are highly dependent on users' experience.

Rapid True 3D Design Verification Tool

eDesign-Flow assists you a deep insight in solid plastic flow behaviors from macro view to micro view. You can know better how the solid melt flow progresses, accurately identify where weld surfaces are, detect the air traps, melt front hesitation or short shot, and estimate the clamping force to choose a suitable machine.

Moldex3D

eDesign-Pack follows the material PVT characteristics to predict the shrinkage, sink mark and density variations. It also helps you to precisely determine the gate freeze time, the efficient packing time and the proper packing pressure to minimize the areas of high volumetric shrinkage.

Rib design

Sink mark prediction

Volumetric shrinkage prediction

Moldex3D eDesign – Cooling Analysis

eDesign-Cool accurately analyzes the mold temperature, efficiency of cooling channel layout and required cooling time in the design phase. It is very useful to detect possible mold cooling system defects, such as unbalanced cooling, hot spots, etc. You can accurately evaluate the cooling efficiency to optimize the cooling system design and reduce the cycle time.

Moldex3D eDesign – Warpage Analysis

eDesign-Warp predicts the warpage tendency before building the mold. It easily and efficiently improves the part quality and optimizes the design. For fiber-reinforced materials, it follows the fiber composite theories to predict the fiber orientation, anisotropic shrinkage and warpage.

Moldex3D

A precise 3D fiber orientation simulation of both short and long fibers by considering the fiber length, diameter, concentration, etc.

It predicts process-induced anisotropic thermal calculation of fiber-reinforced plastic parts for improving product dimensional stability and resistance to deformation.

Moldex3D simulation

Experiment (SEM)

High orientation intensity

Low orientation intensity, high isotropic

Moldex3D eDesign Multi-Component Molding (MCM) Analysis

eDesign-MCM simulates the multi-component molding process, including insert molding, overmolding, and multi-shot sequential molding. The accurate interaction behavior and warpage prediction for different components help to further optimize the product design.

Moldex3D eDesign Viscoelasticity (VE) Analysis

- > A professional calculation of viscous and elastic properties of polymer materials for flow-induced residual stress and warpage.
- Supports both differential and integral types of viscoelastic constitutive models.

Moldex3D eDesign Advanced Hot Runner Analysis

- > A detailed visualization of the distribution of melt temperature and moldbase temperature in a hot runner system.
- > Provides the full interpretation of hot runner components, including heating coils, manifolds, bushing, nozzles, etc.
- It simulates the heating of sensor-coupled hot runners to improve the thermal uniformity and prevent the degradation of plastic material.

Moldex3D eDesign Expert Analysis (DOE)

- > A professional tool using DOE (Design of Experiment) for efficient optimization of process conditions, such as filling time, packing time, melt and mold temperature, etc.
- A series of analysis jobs will be launched automatically and collected.
 Graphical summary for part quality evaluation and optimized design will be proposed automatically.

nput	DOE	Run Result	Quality R	esponse	S/N Ratio R	lesponse	Response Curves	Optimized Design	Sensitivity Analy
DOEN	Method		Taj	guchi Ort	thogonal Arra	y L4(2^3) Orthogonal Array		
DOE F	Run Res	rults :							
No.[Run]	STDEV of	QF #1:	CF#1:	Filling time	CF #2:	Melt temperature	CF #3: Mold temp	perature
1 [38	8]	2.10927		0.1054	71	289.27	5	69.825	
2 [39	9]	2.67789		0.1054	71	319.72	5	77.175	
3 [40	0]	2.09452		0.1165	73	289.27	5	77.175	
4 [4]	1]	2.67552		0.1165	73	319.72	5	69.825	
5 [42	2]*	2.09449		0.1165	73	289.27	5	77.175	
Re	Result esult :	Adviser	ge_Volu	metric	Shrinkag	je val disr	acement ver	tor (mold	
Re	Result :	Adviser Warpa Shows cooling room to	ge_Volu the len effect) emperat	metric gth of after tl :ure. Tl	Shrinkag the therm he part is his is an i	je ial disp ejecte indicati	placement vec d and cooled or of effect of	tor (mold A B B B B B B B B B B B B B B B B B B	
Re	Result :	Adviser Warpag Shows cooling room to cooling	ge_Volu the len effect) emperat on part	metric gth of after ti ture. Ti t warpa	Shrinkag the therm he part is his is an i age behav	ge aldisp ejecte indicat vior.Th	placement vec d and cooled or of effect of is value is an	tor (mold down to balanced indicator	
Re Re Mi	Result : esult : ?	Adviser Warpag Shows cooling room to cooling 0.253	ge_Volu the leng effect) emperat on part	metric gth of after tl ure. Tl t warpa	Shrinkag the therm he part is his is an i age behav	ge ejecte indicati vior. Th Max :	placement vec d and cooled or of effect of i is value is an 6 428	tor (mold down to balanced indicator	
Re Re Mi	Result : esult : esult : r	Adviser Warpay Shows cooling room to cooling 0.253 2.839	ge_Volu the len (effect) emperat (on part	metric gth of after ti cure. Ti t warpa	Shrinkag the therm he part is his is an i age behav	ge ejecte indicat vior. Th Max : SD :	placement vec d and cooled or of effect of is value is an 6.428 2.094	tor (mold A down to E balanced indicator	
C) F Re Mi	Result : Soult :	Adviser Warpage Shows cooling room to cooling 0.253 2.839	ge_Volu the len; (effect) emperat (on part	metric gth of after tl ure. Tl t warpa	Shrinkag the therm he part is his is an i age behav	ge ejecte indicati vior. Th Max : SD :	placement vec d and cooled or of effect of l is value is an 6 428 2.094	tor (mold A down to E balanced indicator	

Moldex3D eDesign Stress Analysis

- > A complete stress analysis for molding products with user-specified boundary conditions. The deformation and stress field could be determined and precisely inspected if the strength meets the design specifications.
- From R11, gravity and weld line effects are included. Parallel computation is available for enhancing the computation speed.

0.91

× 338 0

Moldex3D

0.0 80.0 m

Moldex3D eDesign FEA Interface & Digimat Interface

- > A seamless integration with leading structural analysis software
 - ABAQUS, ANSYS, LS-DYNA, MSC.Marc, MSC.Nastran, NX.Nastran, NE.Nastran, Radioss
- > Results output items include pressure, reduction of weld line strength, residual stress, fiber orientation, temperature distribution, initial strain, density distribution, etc.
- > Digimat interface is also available

Moldex3D eDesign High Performance Computing (HPC)

> Moldex3D 3D-Flow Parallel Computing Performance with Intel Core i7 CPU-Time

Computation time can be reduced from hours to minutes!

Moldex3D eDesign Comprehensive Material Database

- > Moldex3D material database :
 - Over 7000 plastics
 - Full material models
 - User-defined materials
 - Process condition suggestions

 $-C\ell_n(1+P/B)]+\hat{V}$.

Moldex3D Successful Stories

Simulation-Driven Product Development

Unilever

- > Temperature range: $45^{\circ}C \rightarrow 15^{\circ}C$
- > Cooling time reduced from 4 to 3 sec
- > More than 4M total saving in hardware investment and production cost

LEGO

- > Runner balancing
- > Quality control among cavities
- > Cycle time and process optimization
- > Tool design optimization

SAMSUNG

- > Optimization of the part design and cooling system
- > Warpage prediction and control
- > Cycle time reduced by 16 sec; material cost reduced by 9%

Salcomp

Seleemp > Application: insert molding of charger socket

- > Optimization of the excessive shear heating and material degradation at thin areas
- > Shrinkage and warpage decreased by 20%
- > Runner ratio reduced from 31% to 23%
- > Cooling time for runner ejection reduced by 2 seconds

Summary

Exclusive Features of Moldex3D

Moldex3D

Thank you for your attention!

CoreTech System Co., Ltd. www.moldex3d.com

Appendix 1 ROI Example

Preface

- > Background of Study
- > Case Example
- > Design Change Scheme
- > Analysis Result
- > Overall Cost-Effectiveness
- > Practical Benefit

Background of Study

- > This customer has the following molding capacity:
 - Building mold for big, medium and small size. Annually 600 molds.
 - Average mold design change cost: 300 € per trial, including equipment, man-hour, plastic material, energy consumption.
 - Simulation helps to save 2 mold trials in average:
 - 2x300x600=360.000 €
 - → 360.000 € saved in average annually.

Case Example

	Original Design	Revised Design
Design	NotecsD We have a second seco	Modes D more and the second s
Conditions	 1-cavity mold 3-plate mold Cycle time: 45 s/product Product weight: 96.8 g/product Runner weight: 12.6g/product Warpage: 0.19~1.64mm 8 molds in total 	 2-cavity mold 2-plate mold Cycle time: 16.25 s/product Product weight: 76.8 g/product Runner weight: 3.7 g/product Warpage: 0.1~0.89mm 4 molds in total

- > Target:
 - Use Moldex3D to simulate mold tryout
 - Find optimization design of lowest production cost.
- > Approach:
 - Form 1-cavity mold to 2-cavity mold
 - Enhance production efficiency
 - Evaluate main thickness to lower cost
 - Control Warpage value to ensure yield rate.

Main Thickness	Molding Pressure	Clamping Force	Result	Suggestion
1.3 mm	Х	Х	Short shot	Not Adopted
1.4 mm	220 MPa	260 Ton	 High Molding pressure and clamping force High warpage value (0.16~1.43) Weak product strength with sink mark problem 	Not Adopted
1.5 mm	200 MPa	220 Ton	 High Molding pressure and clamping force High warpage value (0.11~0.99) Weak product strength with sink mark problem 	Not Adopted
1.6 mm	140 MPa	160 Ton	 Proper injection pressure and clamping force High warpage value (0.1~0.89) Better product strength 	Adopted

	Original Design	Revised Design
Runner Volume	13.60 g	7.4 ÷ 2 =3.7g (small)
Pressure Loss	47 MPa	30 MPa
Product Thickness	1.8 mm (Main thickness)	1.6 mm (Main thickness)
Product Volume	96.80g	76.90 g
Warpage value	0.19 ~ 1.64 mm	0.1 ~ 0.89 mm
		Def

dex3D

	Original Design	Revised Design	
Mold Structure	CHICHCOME The function of the	ModecsD Merced 10-10-10-10-10-10-10-10-10-10-10-10-10-1	
	3-plate mold 1-cavity mold	2-plate mold 2-cavity mold	
	F+P+C+Mold open=Cycle time	F+P+C+Mold open =Cycle time	
Production	4+3+18+20 = 45 sec	1.97+4.5+15+11=32.47 sec	
Cycle	45*1=45 sec (1 part per process)	32.47/ 2=16.235 sec (2 parts per process)	
Remark	In terms of mold structure, 2-pla time than 3-plate mold. So the re time effectively.	te mold has a shorter mold open evised design can reduce the cycle	

	Original Design	Revised Design	Cost Enhancement
Cavity Number	1-cavity mold	2-cavity mold	50 %
Mold Type	3-plate mold	2-plate mold	30 %
Production cycle	45 sec/pc	16 sec/pc	64 %
Production Weight	96.8 g/pc	76.94 g/pc	20 %
Runner weight	12.6 g/pc	3.7 g/pc	<mark>80</mark> %
Warpage Value	0.19~1.64 mm	0.1~0.89 mm	45%
Mold number	8 molds	4 molds	50%

> Introducing Moldex3D into mold development of this product can save <u>16,000 €</u>, which is a <u>26% cost-effectiveness</u> <u>enhancement</u> than before.

	Original Design			Revised Design		
Mold Cost	7.5 K	8 Mold	60 K	11.25 K	4 Mold	45 K
Mold Tryout Expense	0.15 K	6 Times	0.9 K	0.15 K	2 Times	0.3 K
Mold Revision Expense	0.1 K	4 Times	0.4 K	0.1 K	1 Times	0.1 K
€	Total Cost		61.3 K	Total	Cost	45.4 K

Note: This evaluation does not include personnel cost used for running the project

Practical Benefit

- > Introduction of Moldex3D into this product can :
 - Enhance 26% cost-effectiveness.
 - Save € 36,000 per month If monthly capacity is 360,000 pcs.

	Original Design	Revised Design
	(unit price)	(Unit Price)
Material Expense	0.2	0.15
Molding Expense	0.12	0.08
Processing Expense	0.04	0.04
Logistics Expense	0.04	0.03
Total	€ 0.4	€ 0.3

Appendix 2 Moldex3D Product Structure

Moldex3D Product Portfolio

- Moldex3D provides a series of simulation packages to > efficiently evaluate molding behaviors and improve product quality:
 - eDesign Basic _
- > Solution Add-on modules provide the broadest range of solutions for different industries

eDesign Basic Package

Included modules Plastic

- > eDesign Basic
 - Provides a full range of flow simulation capabilities
 - Predict filling performance, decide ultimate gate location, eliminate weld lines and air traps

eDesign Package

Included modules

- eDesign
 - Equipped with auto-meshing feature and intelligent modeling wizards for streamline CAD-to-CAE simulation process
 - Delivers reliable analysis results and quickly verifies part and mold designs
 - Easy to use without additional training, efficiently minimize user operation

Professional Package

Included modules

> Professional

- Include eDesign and Shell technologies
- Include eDesign auto-features and enhance simulation efficiency for complex geometry and conventional large and thin shell-like parts

Advanced Package

> Advanced

- Include eDesign, Solid and Shell technologies for the highest complexity process simulation
- Combine the three core features and extend exclusive Boundary Layer Mesh technology
- Deliver more comprehensive capabilities for advanced analysis

Solution Add-on

Included modules

- > Solution Add-on more choices for industries
 - Provide more advanced modules with flexible functionality extensions
 - Bring a broad range of professional solutions for special injection molding processes

Solution Add-on

